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Quantum gravidynamics III. Error estimates and perturbation 
expansions 

M Clutton-Brock? 
School of Physics, The University, Newcastle upon Tyne, NE1 7RU, UK 

Received 24 May 1974 

Abstract. The error of a kernel is expressed as an integral equation involving its error 
generator, which is obtained from the appropriate wave equation. An iterative solution 
of the integral equation leads to a perturbation expansion. 

The relative errors of the covariant kernels derived in parts I and I1 are shown to be of 
second order in the interval, which is necessary if the kernels are to be used in path integrals. 

Expressions for the error generators are derived. They involve the covariant derivatives 
of the world function and the spinor parallel propagator, exact expressions for which are 
given in an appendix. 

1. Introduction 

Numerical analysts like to  say that an  approximation is worthless without an error 
estimate. Perhaps this is an extreme view, but it does contain an  important truth. 
We shall not be confident in the covariant kernels derived in parts I and I1 (Clutton- 
Brock 1975a, b) until we have justified them by a proper error estimate. In order t o  
use an approximate kernel in a path integral, the relative error of the kernel must be 
of the second order in the interval or smaller. We verify in this part I11 that the relative 
error of our covariant kernels is indeed of second order. 

= 4 : 
there is a residual 

An approximate kernel R does not obey the appropriate wave equation 

6 = RL-9 

which is the error generator. We shall see in 0 2 that the error of a kernel is given in 
terms of its error generator by a 4-content integral 

l?-K = [ b K d C  
J 

which is an integral equation for the exact kernel K. An obvious interation yields a 
perturbation expansion. 

We obtain in 0 3 an order of magnitude estimate of the errors from a simple approxi- 
mation to the error generators in a special coordinate system. More general and more 
exact expressions for the error generators, suitable for use in a perturbation expansion, 
are derived in 8 4. 

t Present address : CRESS, York University, Downsview, Ontario, Canada. 

36 



Quantum gravidynamics III  31 

2. Perturbation expansions based on the error generator 

The kernel expresses the wavefunction at a point x” as an integral over a 3-surface 
V’ enclosing x”. By means of Gauss’s theorem we can transform the 3-surface integral 
into an integral over the 4-content enclosed by V’ .  For a Klein-Gordon particle we 
obtain 

” 

Jc, 

and for a Dirac particle we obtain 

$(x”) = 1 [R(,,(x”, x)(bkyk - im)]$(x) dC, 
C 

where $ is the approximate wavefunction generated by the approximate kernel R. If 
the kernel were exact, the quantity in square brackets would be the identity kernel 9. 
The departure & of the square brackets from the identity kernel generates an error in 
the wavefunction, so I call & the error generator. The error generator of the Klein- 
Gordon kernel is 

(2.3) &(,,,(x”, x’) = R(K,)(x”, x‘)( - 8‘6; + m2)  - 9(xrf ,  x‘), 

&(D)(x”, x’) = R(D)(x”, x ’ ) ( ~ ; Y ~  - im) - 9(x”, x’). 

and the error generator of the Dirac kernel is 

(2.4) 

The error in the wavefunction is 

$(x”) - @(x”) = Jc, &(x”, x)ll/(x) dC, (2.5) 

and since +(x) can be expressed in terms of the kernel, there is a similar relation for the 
kernel : 

R(x”, x’) - K(x”, x’) = &(x”, x)K(x, x’) dC. IC, 
This is an integral equation for the exact kernel K which, when solved by iteration, 
yields the perturbation expansion 

K(x“, x’) = R(x“, x’)- b ( ~ ” ,  x,)R(x, ,  x‘) dC, 

+ j &(x”, xl)&(x,, x2)R(x2, x’) dC, dC2 + . . . . (2.7) 

The perturbation expansions used in flat space-time generally cover the whole of 
space-time, but in curved space-time this will not always be possible. For in a large 
region initially diverging geodesics may converge and eventually cross. For two points 
at which geodesics cross, the world function and parallel propagators will not be uniquely 
defined, and in the neighbourhood of the two points the partial derivatives of the world 
function and parallel propagators will be singular. We shall see that the error generator 
depends on the covariant derivatives of the world function and the spinor parallel 
propagator, so we may expect that perturbation expansions covering such a large 
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region will be divergent. It will therefore be necessary to restrict the expansion to a 
region C‘ which is small enough that the geodesics do not cross. 

It may be possible to define a physical process of interest by a transition probability 
between two wave packets covering a sufficiently small region of space-time, in which 
case the process can be analysed by a single perturbation expansion. If this is not 
possible, it will be necessary to calculate the transition amplitude as a path integral. 
The perturbation expansion will still be important for the direct calculation of a path 
integral by the Monte Carlo method, however, because we can thereby increase the 
size of the steps for a given error bound and so reduce the variance. 

3. The order of magnitude of the error 

A path integral with intervals x” c x‘  of order A will have N = O(A- ’) steps. If the 
approximate kernels have relative errors of E ,  so that 

Iz  = ( I+€)K (3.1) 

1 = O(A-’€). (3.2) 

then the relative error of the path integral is 

So to ensure that a path integral has a first-order error, we need to ensure that the 
kernel has a second-order error. We now verify that the covariant kernels derived in 
parts I and I1 do indeed have a second-order error. 

A referee suggested an ingenious method of obtaining a simple approximation 
to the error generator, which is adequate for our present purposes and more revealing 
than an exact expression. We choose a coordinate system and a tetrad field for which 
the kernel is formally identical with the flat-space kernel. Then the error generator is 
obtained from the extra terms in the covariant wave equations. 

We use a quasi-Cartesian coordinate system with coordinates 

( Zk) ”,, 
A x (x) = - WA(X”, x )  = ( u -  U”) - L,A(x”), (3.3) 

where WA(x”,  x )  is the covariant derivative of the world function. The metric is given 
by Synge (1960) as 

(3.4) gAB(x) = qAB + $RAMNBXMXN + O(A3). 

rCAB = -$RcABM + RCBAM)XM + o(A2), 
The tensor connection is 

(3.5) 

so the Klein-Gordon operator is 

( - DAaA + m2) = [ - gAB(aAaB - rCABac) + m2] 

(3.7) 
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obeys the flat-space wave equation 

( - q A B a A a B +  m’)R(KG) = 6‘4’(x) = cf(x”, x’), 

and so the error generator is 

qKG) z - ( + R B , x ~ ~ ,  + ~ R A ~ E ,  . (3.9) 

The tetrad frame which makes the spinor parallel propagator formally identical to 
the identity matrix I is obtained by parallel propagation from x” : 

(3.10) 
dXN 
du A$(x) = q,” - ria- du = q,” + iR$aN X M X N  + O(A3). 

The spinor connection is 

(3.12) 

In these coordinates and in this tetrad frame the Dirac kernel obeys the flat-space 
wave equation 

(3.13) R(D)(8Aq,”ya - im) = 6 ‘ 4 ’ ( ~ ) ~  = J(x”,  x’), 

and so the error generator is 

4 D )  E RD{iaC,RAya~XMXN--haPV(ZRpvpl~ + R p a v M  - RvapM)XM}ya. 

The Klein-Gordon kernel connects wavefunctions through the relationship 

(3.14) 

and since 

1 dV = O(A3), 

the Klein-Gordon kernel must be of order 

(3.15) 

(3.16) 

R(D) o(A-3), a ~ , , ,  = 0 ( ~ - 4 ) .  

By combining (3.17) with (3.9) we find 

= O(A-’), 
and by combining (3.18) with (3.14) we find 

qD, = O(A-’). 

(3.18) 

(3.19) 

(3.20) 
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The relative error in the kernel is 

and since 

/ d C  = O(A4), d = 0 ( A w 2 ) ,  

we find that 

c = O(A2), 

(3.21) 

(3.22) 

(3.23) 

so that the relative error of the kernel is indeed of the second order in the interval. 

4. Evaluation of the error generator 

To use the error generator in a perturbation expansion, we need an expression which 
does not put x” at the origin of its coordinate system. So we now evaluate the error 
generator in an arbitrary coordinate system. 

The flat-space Klein-Gordon kernel is a scalar function k( . . . ) of t where 

5 = ~ ~ , b ( X ‘ ‘  - X’),(x‘‘ - X’)b. (4.1) 
The covariant Klein-Gordon kernel is the same function k( . . . ) of the world function 
W = W(x”,x’) which is defined by Synge (1960) as half the square of the geodesic 
measure between x” and x’. Hence the error generator is 

&G)(x”, x’) = ( -  Db8’ + m2)k( W )  - Y(x”, x’) 

- W ( X ” ,  X’PW(X”, x’),a&k( W ) -  W ( X ” ,  x’):a,k( W )  

+m2k(W)- .9 (x” ,  x’). (4.2) 

lim W(x”,  x’): = 4, (4.3) 

Making use of the coincidence limit 

x’’+x’ 

and of the relation 

W(x”,  x?,W(x”, x’), = 2W(x”, x‘), (4.4) 
we rewrite (4.2) as 

~ K ; ) ( X ” ,  x’) = [4- W(X”,  x’):]a,k(W)+ [( -2WaZ,-4a,+m2)k(W)-Y(x“,  x‘)]. (4.5) 

In flat space-time, the kernel is exact, the error generator vanishes, and so 

( -  2 wak - 48, + m2)k( W )  = Y(x”, x’). (4.6) 
Except at the point x” = x’ this is just a property of the function k( . . . ), and since in a 
small neighbourhood of x” = x’ the effects of curvature may be neglected, (4.6) must 
be true in a curved space-time as well. Hence the error generator of the Klein-Gordon 
kernel is 

qKC)(x‘’, x’) = [4- W(X”,  x’);]a,k(W). (4.7) 
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The Dirac kernel with xq at  x” is 

tZ0,(x”, x’) = i exp[iq,W”(x”, x‘)]w(~) dQ(q)A(x”, x’). s 
If we multiply the integrand by 

where w+(q) is such that 

then we get 

s exp[iq,W”(x”, x’)]w(q)w +(q)  dQ(q)A(x”, x’) = Y(x”, x’). 

(4.8) 

(4.10) 

(4.1 1) 

(4.12) 

The error generator of the Dirac kernel is 

~D)(x” ,  x‘) R(D,(x‘, x’)(QY~ - im) - Y(x”, XI) 

= i 1 exp[iq,~”(x”,  x’)lw(q) m(q) 

x {A(x”, x’),yp + A(x”, x’)[iqQW2(x’’, x’)# - im]} - Y(x”, x’). (4.13) 

Using the commutation relation 

A(x”, x’)y” = y@ga(xN, x‘),A(x’‘, x’), (4.14) 

we find 

A(x”, x’)[iqaW”(x”, x’)J” - im] 

= - iw+(q)A(x”, x’) + iq,y@[W”(x”, x’)”gP(x’, x ” ) ~  + q;]A(x”, x’). (4.15) 

The error generator of the Dirac kernel is 

~D)(x”,  x‘) = exp[iq,W”(x”, x’)lw(q) dQ(d 

x { iA(x”, x’),y” - q,yB[ W“(x”, x’),g,(x’, x ” ) ~  + q;]A(x”, x’)}. (4.16) 

Synge (1960). gives approximate expressions for the covariant derivatives of the world 
function, from which we have 

s 

(U“ - U)’ dxk dx’ 
4- W(X”, x‘); = - Rkl- - du + O(A4), 

u”-u’ du du 

W”(X”, x’)”g”(x’, X”)@ + ‘l; 
(4.17) 

(4.18) 
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If we apply Synge’s method for the covariant derivatives of the tensor parallel propa- 
gator to the spinor parallel propagator, we obtain 

(4.19) 

Here rikll1 is the commutator of the covariant derivative of the spinor parallel propa- 
gator. These expressions are adequate for first-order perturbation expansions. For 
higher-order perturbation expansions we need more accurate expressions, which we 
derive in the appendix. 

5. General conclusions 

It is now time to take stock of our exploration of quantum gravidynamics. What has 
been achieved, what are the major limitations of the path integral approach, and what 
should be done to improve it? 

The covariant kernels have second-order errors, and so are equivalent to a flat- 
space kernel with first-order perturbations. The analogous kernel in quantum electro- 
dynamics is 

X“ 

&&x’’, x’) = exp(i Jx, &(x) dxk)K,(x”. x’), 

where K ,  is the free-particle kernel. Thus first-order effects can be predicted by the 
covariant kernels directly, and second-order effects by first-order perturbation ex- 
pansions. 

Those physical processes that can be defined over a restricted region of space-time 
can be analysed using the covariant kernels and perturbation expansions based on them. 
However, in the Compton era, when the radius of curvature of the universe is less than 
the Compton wavelength of typical particles, physical processes will cover regions 
containing many radii of curvature. Then geodesics may well cross in the region of 
interest, and perturbation expansions cannot cover the entire region. There is then no 
alternative that I can see to a path integral, with steps small enough so that the geodesic 
over each step is unique. 

The techniques for evaluating path integrals are as yet undeveloped. The crude 
Monte Carlo method outlined in part I would of course be hopless. However, it may be 
possible to develop sufficiently sophisticated methods of variance reduction to turn a 
refined Monte Carlo method into a workable method. The major problem is the large 
amount of phase cancellation that occurs on paths far from the classical path of stationary 
action. It should be possible to overcome this by using a variant of the ‘correlated 
sampling’ technique, in which single paths are replaced by bundles of paths. The 
individual paths in each bundle may be weighted so that paths near the classical path are 
given more weight than paths far from the classical path (‘importance sampling’). The 
information gained during the process of generating the paths may be used to multiply 
the paths in some bundles and to cancel paths in other bundles (‘Russian roulette and 
splitting’). 

It would be even more useful if we could develop analytic approximations to path 
integrals, perhaps in spaces of particular symmetry such as the Kerr or Robertson- 
Walker metrics. 
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In part I we referred to the problem of interpreting wavefunctions : this is an important 
need for any theory of quantum gravidynamics. The interpretation should be based on 
the analysis of conceivable measurements. In a space of small curvature it should be 
possible to put the whole measurement inside a region in which geodesics do not cross : 
then the measurement may be analysed using perturbation techniques. For spaces of 
large curvature, we must again turn to path integrals. 

In spite of the technical difficulties, If feel that the path integral approach provides a 
well defined and conceptually simple framework for quantum gravidynamics. 
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Appendix. Exact evaluation of the covariant derivatives of the world function and the 
spinor parallel propagator 

Consider a family of geodesics, starting from a fixed point x”, and ending on a curve 
x’ = x’(v). Along the geodesics there is an affine parameter U which has the fixed end 
values U” and U‘ at x” and x’,  so the geodesics span a 2-space x(u, U). In this 2-space we 
define the vectors 

axk a x k  
P ( x )  = -. 

au a v  
V ( X )  = -, 

Now vk(x) at any point x on a geodesic depends linearly on its value Vk’ at the end point 
x’.  There must be a tensor 5Bk(x, x”, x’),,, connecting Vat x with V at x’ : 

Vk(x) = ($+,,,, x”,  X’),,,V”. 

We call this tensor the deviation tensor. From the differential equation of geodesic 
deviation, Synge (1960) derives an integral equation for the behaviour of V along the 
geodesic. The deviation tensor obeys substantially the same integral equation : 

+ ( E -  U’)) dij 
(U”- E)(u - U’) (s. U “ - U  

@ ( X ,  x”,  x’),,, = g‘(x, XI),,,+ 

which is readily solved by iteration to any desired degree of accuracy. The deviation 
tensor represents a fundamental property of space-time, and the difference between the 
deviation tensor and the parallel propagator is the global analogue of the curvature 
tensor. 

The arguments leading to the covariant derivatives of the world function follow 
closely those of Synge, except that we use the deviation tensor where he uses its first 
approximation, the parallel propagator. Since 

Wk(X”, x’) = (U” - u’)Vk(x”), W ( X ” ,  x ’ ) ~  = -(U” - u’)V~(X’) ,  (A.4) 
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we have 

Wk(x”, x’),,,V” = (U” - U’)D”~(X”) = (U” - u‘)D,V~(X”), 

W(X”, x’): V”’ = -(U” - u’)D, Vk(x’). 

Now we use (A.2) and (A.3) to differentiate Vwith respect to U : 

(U” - u’)D,P(x) 

= - gk( x, x’),,, P’ + ( /;(urf-ii)- / i ( i i - u ’ ) )  dii 

On substituting into (AS) and (A.6), and cancelling the arbitrary V”, we find 

Wk(X”, x’)m = -gk(x”, x’)m 

(U” - U) (U - U‘) 
k(X”, x),RqMbUPUq9b(X, X”, X’),,, du. 

U‘’ - 4 2  
g k(X’, X),Rap,bUPUq9b(X, X”, X’),,, du. (‘4.9) i, W(x”, x‘); = g;+ 

To find the covariant derivative of the spinor parallel propagator, we consider two 
spinors $ and 4 which are carried by parallel transport along the geodesic : 

$(XI = $(x”)A(x”, x), 4(x) = A(x, x’)4(x’). (A. 10) 

We start with 
$(x)b, = $(x”)A(x”, x),, VYx) ,  (A.11) 

and since 

Du4 = 0, $Eu = 0. (A. 12) 

we have 

(A. 13) 

Recall that the covariant derivative of an adjoint spinor is 

qbk = $(a‘, - rk) with rk = -$d“’&, lZ lk .  (A. 14) 

It is easy to verify that the 0 matrices commute, and so the spinor connection matrices 
rk commute. Hence the commutator of the covariant derivatives of an adjoint spinor is 

(A. 1 5) 
c c  $(Dubu- DUD,) = $brkBfll/kuf = --$r[kll]vku’. 

where 

(A. 16) 

d -($h#J) du = --$r[k,f]4vkUf, (A. 17) 
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*U’’ 

(A. 18) 

Substituting for V“ from (A.2), and cancelling the arbitrary IJ”, @ and Vp‘, we find 

The approximate expressions quoted at the end of 0 4 may be obtained from (A.8), (A.9) 
and (A.19) by substituting the tensor parallel propagator for the deviation tensor. 
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